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Another possible description of fluctuations
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We show that the developed quantization procedure in the field theory of thermodyriespesially heat
conduction, which handles the thermodynamic variables as operators, is suitable to express the magnitude of
energy fluctuation in the case of heat conduction. We can examine a nonequilibrium process and we point out
that our formulation of fluctuations is not in contradiction with the statistical mechanics. We can discuss in our
treatment whether it would be possible to measure the temperature around the absolute zero temperature.
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I. INTRODUCTION Il. TEMPERATURE OPERATOR AND ITS EIGENVALUES

The solution of a differential equation of a physical pro- We are dealing with source-free heat conduc(i®@,21]
q pny PO~ the infinite field to calculate the temperature deviation in

Cess describes an exact path of the .phenomer)on N Space afy itrary time and coordinate of space. The relevant differ-
time. However, we know from experience that if we measure

: ; . ; ential equation, Fourier heat conduction is
a physical variable, we have information about the average
of this quantity because of the random differences around Y

this value[1-4]. We can express the deviation of the field T——AT=0, (2

quantity F(x,t) as C
which is a parabolic differential equation. We def[d6,21]

AF=‘/E—E, (1) a new physicql space which generates the measurable
quantity T in this way,

whereF is the average of, andF?Z is the average of?. It Y
is usual to calculate this kind of deviation using the concepts T=—¢— C—Aqo. 3
of statistical mechanics supposing different ensembles and v

the condition of equilibrium(5-8|. The system, in which 1pe | agrangian density can be given in the following form:
nonequilibrium processes take place, can be characterized by

different distribution functions of physical variables. . 12
There were several successful attempts to construct a L:§<P2+§ ?(AQD)Z- (4)
v

Hamiltonian variational principle to exploit the mathematical
background to reach deeper insight into the physical proce
[9-16]. On the other hand, there are some efforts to p
discrete quantities into the theory of thermodynami

SPhis Lagrangian pertains to a purely dissipative process, and
Ubt course, it contains the irreversibility of the process itself.

“Swe just mention here that those kinetic models, which are
[17.18. based on the Hamilton-Lagrangian formalism, admit revers-

We sta(t from th? contlnu_um deSCI‘I.ptIOI’] of the Sys‘tem'ible terms in the heat transmission. This fact shows an essen-
We quantize the field, as is usual in quantum theorle§ial difference between the theories

[19,20, and eventually all we can handle the system as a

space of a lot of quanta. We obtain discrete levels of the We obtain the Euler-Lagrange equation for the

guantities as the eigenvalue of the introduced opera&irs A2
which operate on nonequilibrium irreversible field variables. —¢o+ —AAp=0. 5
(A similar idea introducing of operators can be found in G

[22]). We summarize the states and we have to take int
account an exponential factor. Because of the higher level
for quanta, the probability to fill these is decreased. In thi
manner we calculate the fluctuation of the variables. In th
present paper we show the energy density fluctuation in Fo
rier heat conduction. This is one of the simplest examples, L . ; )
and there is no doubt about the existence of quanta in thHion obeys periodic boundary conditions. The Fourier series
present phenomenon; these are quanta of energy. We c&h® [21] reads

speak about energy density fluctuation in the case of a heat

con_ductio_n(purely dissipativig but we emphasize that this is o= 2 \ﬁ (Ccokx+ S,sinkx), (6)
a kind of irreversible process. K \%

is easy to see that this equation is equivalent with that
equation which can be obtained by substituting &j.into

g. (2). We can restrict the domain of potential function

(x,t) to an arbitrarily large but finite cubical box of volume
L§=I3 centered at the origin, at the walls of which the func-
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where the coefficient€, and S, are the function of time, Y
and k=(k; ,k,,k3) is not an arbitrary vector. The compo- 3:$+_S+$::C_k2h5k|- (17
nents are restricted to the values=27n,/l; k,=27n,/l; v

ks=2mn3/l, whereny,n;,n3 are positive or negative inte- \We can obtain the Hamiltonian operator if we take into ac-
gers or zero. Itis always assumed that the lirite is taken  count Eqs(12)—(15),

at the end of calculation. The temperature space can be given
by these coefficients using Eq8) and (6),

H=20 (C{Cy +S(S). (18)
_Ek V(Ckco$x+sksmkx) We would like to introduce the temperature operafor
Since,
2 AK? _
+E = — (Crcokx+ Ssinkx). (7)
© VG —"5(Ci—Cy), (19
\f )\kz
If we integrate over the volume, we can calculate the La-
grangian of the system c
=——(S/-S). 20
, S= e S 7S (20

1 . . A
- [Lav-53 [(Cﬁ+8ﬁ>+7k4<CE+S§> . ®
K C We substitute these into the formula of temperature,(Eyg.
We got the Lagrangian expressed by the normal coordinates

lc . . . .
Cy and S,. The next step is to introduce the canonically 7= 2 v)\—lzz[(ck*—Ck’)coskx+(SK+—S{)sinkx]
conjugated quantities t€, and S, which are the first de-

rivative of these,
_ +E \[ (CF —Cp)cokx+ (S — S )sinkx], (21)
Pi&'=Cy, 9

S and now we can sp_eak about temperature operator becaus_e of
P”=S (10 the coefficients which are operators This equation contains
the first time derivatives oF, , C , Sy , andS, . The Pois-
by which the Hamiltonian of the heat conduction process isgon pracket expression of a certain quantity and Hamiltonian

operator give the time derivative of it, e.g., f@, and

1 Cl= 1[(:+ H] A k’C, (22)
k= plek U= 7 ko
After these, letP(®), C,, P{¥, and S, be operators that Co
obey the following commutation rules: 1 N
rco - K2CT
[P, Cil=hdy., (12 L T =E G =
Similar equations are valid f@, andS, . We substitute all
[P,S]=hé (13
k - ki -

of these into Eq(21) and we can write the temperature op-

. - _ _ erator in a short form,
We introduce new coefficien8, , C, , Sy , andS, for the

theory, 1
=> 2 \/:(c;coskx+ S sirkx). (24)
_ PO K2 © oY
C'=—%—C,, (14) _ _ )
2 2, K This operator contains the creation operatf@$] C; and
Sy (they produce the same quantao we take7 as a cre-
_PY )\kz ation operator, which is the combination of these. In this way
= (15 we can calculate the eigenvalues of the operatolet us
\/— \/—C suppose thex is an eigenvalue of the operatét with the

L eigenfunction¥,
where we used the sig® to reduce the number of equa-

tions. It is useful to choos€*,S* as new normal coordi- HY =V, (25)
nates. We handle these as operators and we can derive the
following commutation rules from the Eqgl2) and(13): It can be proved thaf ¥ is an eigenfunction of+,

A
a+ C—kzh)T\P, (26)

v

A
C,Ci-Cc/cy =C—k2h6k, , (16) HT V=
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and we can read the new eigenvalue?ofwith the eigen-  we will know how many possible states exist within tihk
function 7. The difference in the eigenvalues interval in the total space. If we devide it by the volume of
coordinate spack’, we receive the density of these states,

N

—k2h (27)

C dn(k)=
can be considered as the “quanta of temperature.”

ez kedk. (36)

We obtain the average energy per one quaniynif we
IIl. ENERGY FLUCTUATION integrate over all of the energy states weighted by the num-

ber of states and divided by the number of these,
For the calculation of the number of quanta as a function

of k in a finite volume, which obeys the periodic boundary

conditions, we express the numbeas ol % 1
f e(k)dn(k) f Ahk? sk?dk
2mn —_° 0 16m
k=—— (28) AL =T e 1 (37)
fo dn(k) fo 167T2k2dk

wheren may be an integer anldis the edge of a cube in

which the process is going. The specific heat capagityan =~ We are not surprised at this result at all, because there is no
be defined with the internal energy densitgx,t) and the limit in k. This integration supposes an infinite radlusf
temperaturel (x,t), which shows that the system is in local sphere and this means that an infinite number of quanta exist.

equilibrium, That is the reason why the average enregy per one quantum
is infinite. We can assume that the lower energy states are
au more possible and we are allowed to introduce a function
—=C,. (29
oT
k2

Equation(2) is valid when ~e (38)

u=c,T (30 which can decrease the number of states exponentially. We

multiply the integrand of Eq(36) by this factor and the
linear connection holds, i.eq, is independent of the tem- average energy per one quantum can be obtained as an infi-
peratureT. That is why we can speak about temperature omite integral over all of the,
energy fluctuation at the same time in the following. It is
more usual to summarize over energy states, so we follow

this. The possible energy states are = Nhk* k2
T6n2° UK
_ 0
e(k)=\hk?, (31 €1= 5 . (39
: . . f e ““dk
which can be written with the,, n,, andn, o 16w
4m® L, We use the well-known infinite integral
8n1n2n3:)\h|_2(n1+ ns+n3). (32
The three different series of belong to the three different n+1
space directions. We imagine a one-eighth sphere with a ra- P 2
diusk. The numbers are within this part of space, o 1€ T (40
2 —
k= T /n?l+ n27+ nz, 33 © calculatee 4,
and we can give the number of the possible sthti@dg if we 5
calculate the volume of it, i3
Ah 2
Lam(lk\® 1133 _ 272227 3 1
N(k):__ —| == —. (34) Glz—gzzkh;. (41)
8 3 \27 48 2
1 2
If we derive this with respect té, 272 2a°72
3
_ 2 If the whole space contaird number of quanta, the energy
dN(k) 16772k dk, (35 of this space can be calculated,
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3 1 Ae)>=N(A€;)?, 50
ena=Sannt . (Ae)*=N(Aey) (50)
“« which means that
The heat capacitZ, of the whole system is defined as
3 1
2_ SN 212N
) e N (Ae)*=5A*h*N— (5
VEoT (43 _
in our case.
We can calculat€,, using this formula, Now, we can compare our result with the result of statis-
tical mechanics again if we use the form @f(45),
1
N (44 1
2T (Ae)?=Z TGN T (52
If we suppose tha€Cy is a constant quantity, i.e., when the
whole system is close to the equilibrium, we obtain for ~ Of
3\hN 1 \ﬁ
- — Ae)=\/=fkgVNT. 53
=, T (45) (Ae)=\/5Tke VN (53

In this case we are allowed to assume tBatis independent The good agreements with the statistical mechanics calm us,
of the temperatur@, soe =C,T. Now, we make a compari- and we believe that we can check our results and ideas in a

son with the statistical mechanics. If we take into account th€ontinuous comparison in this way.

result of the statistical mechanics, nameg, =3fkgN, ~ Now, we are dealing with Eq$42) and(51). These equa-
wheref is the degrees of freedom akg is the Boltzmann  tions contain the parameter, which is not known in general
constant, we get for the; (41) and it is in the exponential of expressi¢d8). We can cal-

culate the relative fluctuation, which is

1

ElzikaT. (46) Ae \/5 1
—=\/: = (54
€ 3 \/N

This result shows that our description of the physical prob-
lem is in line with the results of statistical physics. Namely,
our method gives back these results as an extreme case of @n the one hand, it can be seen that the result is independent
To obtain the energy fluctuation we have to express th@f «. On the other hand, we are not restricted to choosing the
average ofe; square, which can be calculated as numberN as too great a number. That is why the interesting
thing is when

2K2
o 6~ ak?
o Jo 16772k € dk Ae~e, (55
El: 0 1 ) (47) . . . . . .
j K2e~ gk i.e., the fluctuation is comparable with the energy. This is
2 . .
o 167 valid when the number of quantd is not a great number,
_ practically a few hundred or less. We think this means that
After a short calculation we get that we cannot measure the temperature exactly, because the am-
plitude of fluctuations will be comparable with the energy
independently of the temperature. When we tend to the zero
?=E)\2h2i. (48) temperature, we can assume that the number of quanta de-
g a? crease, consequently the relative fluctuation increases.

) ) _ Maybe this is the reason why we cannot measure around the
The described prqcedure allows us to derive the magnitudgpsolute zero temperature exactly, when we cool the body
of energy fluctuation in the sense of H@). The square of = yith heat conduction. We can measure the average of energy
magnitude of deviation of\e; can be read if we use the anq temperature but we are not sure what the exact energy
equation and temperature is when we have a small number of quanta.

— —2 IV. CONCLUSION
(Afl)zzflz_fl . (49)

The fluctuation theory of physical processes is based on
The energy fluctuation of the system can be obtained in théhe concepts of statistical mechanics. This theory of physics
case ofN quanta, takes into account the physical system as the certain en-
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