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We show that the developed quantization procedure in the field theory of thermodynamics~especially heat
conduction!, which handles the thermodynamic variables as operators, is suitable to express the magnitude of
energy fluctuation in the case of heat conduction. We can examine a nonequilibrium process and we point out
that our formulation of fluctuations is not in contradiction with the statistical mechanics. We can discuss in our
treatment whether it would be possible to measure the temperature around the absolute zero temperature.
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I. INTRODUCTION

The solution of a differential equation of a physical pro-
cess describes an exact path of the phenomenon in space and
time. However, we know from experience that if we measure
a physical variable, we have information about the average
of this quantity because of the random differences around
this value@1–4#. We can express the deviation of the field
quantityF(x,t) as

DF5AF22F̄2, ~1!

whereF̄ is the average ofF, andF2 is the average ofF2. It
is usual to calculate this kind of deviation using the concepts
of statistical mechanics supposing different ensembles and
the condition of equilibrium@5–8#. The system, in which
nonequilibrium processes take place, can be characterized by
different distribution functions of physical variables.

There were several successful attempts to construct a
Hamiltonian variational principle to exploit the mathematical
background to reach deeper insight into the physical process
@9–16#. On the other hand, there are some efforts to put
discrete quantities into the theory of thermodynamics
@17,18#.

We start from the continuum description of the system.
We quantize the field, as is usual in quantum theories
@19,20#, and eventually all we can handle the system as a
space of a lot of quanta. We obtain discrete levels of the
quantities as the eigenvalue of the introduced operators@21#,
which operate on nonequilibrium irreversible field variables.
~A similar idea introducing of operators can be found in
@22#!. We summarize the states and we have to take into
account an exponential factor. Because of the higher levels
for quanta, the probability to fill these is decreased. In this
manner we calculate the fluctuation of the variables. In the
present paper we show the energy density fluctuation in Fou-
rier heat conduction. This is one of the simplest examples
and there is no doubt about the existence of quanta in the
present phenomenon; these are quanta of energy. We can
speak about energy density fluctuation in the case of a heat
conduction~purely dissipative!, but we emphasize that this is
a kind of irreversible process.

II. TEMPERATURE OPERATOR AND ITS EIGENVALUES

We are dealing with source-free heat conduction@16,21#
in the infinite field to calculate the temperature deviation in
arbitrary time and coordinate of space. The relevant differ-
ential equation, Fourier heat conduction is

Ṫ2
l

cv
DT50, ~2!

which is a parabolic differential equation. We define@16,21#
a new physical spacew which generates the measurable
quantityT in this way,

T52ẇ2
l

cv
Dw. ~3!

The Lagrangian density can be given in the following form:

L5
1

2
ẇ21

1

2

l2

cv
2 ~Dw!2. ~4!

This Lagrangian pertains to a purely dissipative process, and
of course, it contains the irreversibility of the process itself.
We just mention here that those kinetic models, which are
based on the Hamilton-Lagrangian formalism, admit revers-
ible terms in the heat transmission. This fact shows an essen-
tial difference between the theories.

We obtain the Euler-Lagrange equation for thew,

2ẅ1
l2

cv
2 DDw50. ~5!

It is easy to see that this equation is equivalent with that
equation which can be obtained by substituting Eq.~3! into
Eq. ~2!. We can restrict the domain of potential function
w(x,t) to an arbitrarily large but finite cubical box of volume
V5 l 3 centered at the origin, at the walls of which the func-
tion obeys periodic boundary conditions. The Fourier series
of w @21# reads

w5(
k
A2

V
~Ckcoskx1Sksinkx!, ~6!
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where the coefficientsCk andSk are the function of time,
and k5(k1 ,k2 ,k3) is not an arbitrary vector. The compo-
nents are restricted to the valuesk152pn1 / l ; k252pn2 / l ;
k352pn3 / l , wheren1 ,n2 ,n3 are positive or negative inte-
gers or zero. It is always assumed that the limitl→` is taken
at the end of calculation. The temperature space can be given
by these coefficients using Eqs.~3! and ~6!,

T52(
k
A2

V
~Ċkcoskx1Ṡksinkx!

1(
k
A2

V

lk2

cv
~Ckcoskx1Sksinkx!. ~7!

If we integrate over the volume, we can calculate the La-
grangian of the system

L5E LdV5
1

2(k F ~Ċk
21Ṡk

2!1
l2

cv
2 k

4~Ck
21Sk

2!G . ~8!

We got the Lagrangian expressed by the normal coordinates
Ck and Sk . The next step is to introduce the canonically
conjugated quantities toCk andSk , which are the first de-
rivative of these,

Pk
~C!5Ċk, ~9!

Pk
~S!5Ṡk, ~10!

by which the Hamiltonian of the heat conduction process is

H5(
k

S 12Pk
~C!22

l2

cv
2 k

4Ck
2D 1(

k
S 12Pk

~S!22
l2

cv
2 k

4Sk
2D .

~11!

After these, letPk
(C) , Ck , Pk

(S) , andSk be operators that
obey the following commutation rules:

@Pk
~C! ,Cl #5hdkl , ~12!

@Pk
~S! ,Sl #5hdkl . ~13!

We introduce new coefficientsCk
1 , Ck

2 , Sk
1 , andSk

2 for the
theory,

C75
Pk

~C!

A2
7

lk2

A2cv
Ck , ~14!

S75
Pk

~S!

A2
7

lk2

A2cv
Sk , ~15!

where we used the sign7 to reduce the number of equa-
tions. It is useful to chooseC7,S7 as new normal coordi-
nates. We handle these as operators and we can derive the
following commutation rules from the Eqs.~12! and ~13!:

Ck
2Cl

12Cl
1Ck

25
l

cv
k2hdkl , ~16!

Sk
2Sl

12Sl
1Sk

25
l

cv
k2hdkl . ~17!

We can obtain the Hamiltonian operator if we take into ac-
count Eqs.~12!–~15!,

H5(
k

~Ck
1Ck

21Sk
1Sk

2!. ~18!

We would like to introduce the temperature operatorT.
Since,

Ck5
cv

A2lk2
~Ck

12Ck
2!, ~19!

Sk5
cv

A2lk2
~Sk

12Sk
2!. ~20!

We substitute these into the formula of temperature, Eq.~7!,

T52(
k
A1

V

cv
lk2

@~Ċk
12Ċk

2!coskx1~Ṡk
12Ṡk

2!sinkx#

1(
k
A1

V
@~Ck

12Ck
2!coskx1~Sk

12Sk
2!sinkx#, ~21!

and now we can speak about temperature operator because of
the coefficients which are operators. This equation contains
the first time derivatives ofCk

1 , Ck
2 , Sk

1 , andSk
2 . The Pois-

son bracket expression of a certain quantity and Hamiltonian
operator give the time derivative of it, e.g., forCk

1 and
Ck

2,

Ċk
15

1

h
@Ck

1 ,H#52
l

cv
k2Ck

1 , ~22!

Ċk
25

1

h
@Ck

2 ,H#5
l

cv
k2Ck

2 . ~23!

Similar equations are valid forSk
1 andSk

2 . We substitute all
of these into Eq.~21! and we can write the temperature op-
erator in a short form,

T5(
k
2A1

V
~Ck

1coskx1Sk
1sinkx!. ~24!

This operator contains the creation operators@21# Ck
1 and

Sk
1 ~they produce the same quanta!, so we takeT as a cre-
ation operator, which is the combination of these. In this way
we can calculate the eigenvalues of the operatorH. Let us
suppose thea is an eigenvalue of the operatorH with the
eigenfunctionC,

HC5aC. ~25!

It can be proved thatT C is an eigenfunction ofH,

HT C5S a1
l

cv
k2hDT C, ~26!
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and we can read the new eigenvalue ofH with the eigen-
function T C. The difference in the eigenvalues

l

cv
k2h ~27!

can be considered as the ‘‘quanta of temperature.’’

III. ENERGY FLUCTUATION

For the calculation of the number of quanta as a function
of k in a finite volume, which obeys the periodic boundary
conditions, we express the numberk as

k5
2pn

l
, ~28!

wheren may be an integer andl is the edge of a cube in
which the process is going. The specific heat capacitycv can
be defined with the internal energy densityu(x,t) and the
temperatureT(x,t), which shows that the system is in local
equilibrium,

]u

]T
5cv . ~29!

Equation~2! is valid when

u5cvT ~30!

linear connection holds, i.e.,cv is independent of the tem-
peratureT. That is why we can speak about temperature or
energy fluctuation at the same time in the following. It is
more usual to summarize over energy states, so we follow
this. The possible energy states are

«~k!5lhk2, ~31!

which can be written with then1, n2, andn3,

«n1n2n35lh
4p2

l 2
~n1

21n2
21n3

2!. ~32!

The three different series ofn belong to the three different
space directions. We imagine a one-eighth sphere with a ra-
dius k. The numbersn are within this part of space,

k>
2p

l
An121n2

21n3
2, ~33!

and we can give the number of the possible statesN(k) if we
calculate the volume of it,

N~k!5
1

8

4p

3 S lk2p D 35 1

48

l 3k3

p2 . ~34!

If we derive this with respect tok,

dN~k!5
l 3

16p2 k
2dk, ~35!

we will know how many possible states exist within thedk
interval in the total space. If we devide it by the volume of
coordinate spacel 3, we receive the density of these states,

dn~k!5
1

16p2 k
2dk. ~36!

We obtain the average energy per one quantumē1 if we
integrate over all of the energy states weighted by the num-
ber of states and divided by the number of these,

ē 15

E
0

`

«~k!dn~k!

E
0

`

dn~k!

5

E
0

`

lhk2
1

16p2 k
2dk

E
0

` 1

16p2 k
2dk

→`. ~37!

We are not surprised at this result at all, because there is no
limit in k. This integration supposes an infinite radiusk of
sphere and this means that an infinite number of quanta exist.
That is the reason why the average enregy per one quantum
is infinite. We can assume that the lower energy states are
more possible and we are allowed to introduce a function

;e2ak2, ~38!

which can decrease the number of states exponentially. We
multiply the integrand of Eq.~36! by this factor and the
average energy per one quantum can be obtained as an infi-
nite integral over all of thek,

ē 15

E
0

` lhk4

16p2e
2ak2dk

E
0

` k2

16p2e
2ak2dk

. ~39!

We use the well-known infinite integral

E
0

`

xne2ax25

GS n11

2 D
2a~n11!/2 ~40!

to calculateē 1,

ē 15

lh

2p2

GS 52D
2a5/2

1

2p2

GS 32D
2a3/2

5
3

2
lh

1

a
. ~41!

If the whole space containsN number of quanta, the energy
of this space can be calculated,
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ē 5N ē 15
3

2
lhN

1

a
. ~42!

The heat capacityCV of the whole system is defined as

CV5
] ē

]T
. ~43!

We can calculateCV using this formula,

CV5
3

2
lhN

]
1

a

]T
. ~44!

If we suppose thatCV is a constant quantity, i.e., when the
whole system is close to the equilibrium, we obtain fora

a5
3lhN

2CV

1

T
. ~45!

In this case we are allowed to assume thatCV is independent
of the temperatureT, so ē 5CVT. Now, we make a compari-
son with the statistical mechanics. If we take into account the
result of the statistical mechanics, namely,CV5 1

2f kBN,
where f is the degrees of freedom andkB is the Boltzmann
constant, we get for theē 1 ~41!

ē 15
1

2
f kBT. ~46!

This result shows that our description of the physical prob-
lem is in line with the results of statistical physics. Namely,
our method gives back these results as an extreme case of it.

To obtain the energy fluctuation we have to express the
average ofe1 square, which can be calculated as

e1
25

*0
`

l2h2

16p2 k
6e2ak2dk

E
0

` 1

16p2 k
2e2ak2dk

. ~47!

After a short calculation we get that

e1
25

15

4
l2h2

1

a2 . ~48!

The described procedure allows us to derive the magnitude
of energy fluctuation in the sense of Eq.~1!. The square of
magnitude of deviation ofDe1 can be read if we use the
equation

~De1!
25e1

22e1
2
. ~49!

The energy fluctuation of the system can be obtained in the
case ofN quanta,

~De!25N~De1!
2, ~50!

which means that

~De!25
3

2
l2h2N

1

a2 ~51!

in our case.
Now, we can compare our result with the result of statis-

tical mechanics again if we use the form ofa ~45!,

~De!25
1

6
f 2kB

2NT2 ~52!

or

~De!5A1

6
f kBANT. ~53!

The good agreements with the statistical mechanics calm us,
and we believe that we can check our results and ideas in a
continuous comparison in this way.

Now, we are dealing with Eqs.~42! and~51!. These equa-
tions contain the parametera, which is not known in general
and it is in the exponential of expression~38!. We can cal-
culate the relative fluctuation, which is

De

ē
5A2

3

1

AN
. ~54!

On the one hand, it can be seen that the result is independent
of a. On the other hand, we are not restricted to choosing the
numberN as too great a number. That is why the interesting
thing is when

De;e, ~55!

i.e., the fluctuation is comparable with the energy. This is
valid when the number of quantaN is not a great number,
practically a few hundred or less. We think this means that
we cannot measure the temperature exactly, because the am-
plitude of fluctuations will be comparable with the energy
independently of the temperature. When we tend to the zero
temperature, we can assume that the number of quanta de-
crease, consequently the relative fluctuation increases.
Maybe this is the reason why we cannot measure around the
absolute zero temperature exactly, when we cool the body
with heat conduction. We can measure the average of energy
and temperature but we are not sure what the exact energy
and temperature is when we have a small number of quanta.

IV. CONCLUSION

The fluctuation theory of physical processes is based on
the concepts of statistical mechanics. This theory of physics
takes into account the physical system as the certain en-
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semble of the physical variables. We reverse the way of
thinking. We start from the continuum description of fields,
we quantize this, and there will be discrete characteristics of
it in this way. We showed how to use the quantized field of
heat conduction to discuss the energy fluctuation. We think
that this method shows more possibilities to describe the
fluctuations and to find deeper connection with the statistical
mechanics. There may be a chance that we can discuss pro-
cesses in solid state physics. These works will be great chal-
lenges for us in the future.
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